More Strategies for Study Groups

Remember that to excel, you need to feel confident in your lower-level knowledge, and also push your group to achieve higher-level knowledge. Creating different study sessions for lower and higher level learning will help.

Below are some practical strategies and activities for both kinds of learning.

Lower-Order Activities:

1. Cross-check notes and guides with other group members. Copy new info you don’t have. Overlapping info from different members’ notes might show the importance of a topic.

2. “Jigsaw” chapters: divide up topics or chapters with your group. Have each person become the “expert” on a chapter, gathering notes from class and the book. Then give “expert” notes to group after sharing the material verbally.

3. Split up topics amongst group members. Have each person become the “researcher” to collect additional basic background knowledge. Use the LibGuides, created by LMU librarians, to make it faster for you to find course-specific research. If you want more, use their OneSearch+ to find and filter all kinds of authoritative sources.

4. Make flashcards for major topics, then share. You can make these on index cards, or digitally using a variety of free tech resources. Check out our “Note-Taking (Six Tools)” video for more specifics.

5. Write step-by-step procedures for how to answer certain kinds of problems, or perform certain tasks. This could mean rewriting your own lab instructions without looking at your materials, explaining a solution process in math, or explaining a sequence of events in history.
Higher-Order Activities:

1. **Answer the group’s ACTUAL questions: become the teacher.**
 a. Write down your personal Qs about the material on an index card, or scrap paper.
 b. Have each member draw questions at random from the pile.
 c. Give everyone 5-10 mins to write down an answer *without* looking it up in your notes or texts. If you cannot answer your question, draw another question, and put the hard one back in the pile.
 d. When your 5-10 minutes are up, tell the group the question and teach them the answer.
 e. Have other members of the group verify your answer with their notes/texts.
 f. Return to these questions over time until you’ve answered all questions.

2. **Make a list of answers to the “5Ws” style questions:**
 a. who, what, when, where, why (and how)?
 b. This helps you “apply” the knowledge and begin to “analyze”: who would use this content knowledge, and for what purpose? How might you use this knowledge, and why?
 c. There may not be easy answers to these questions, and your group members might not agree: that’s ok! Share and discuss with your group.

3. **Choose a topic and stage a debate (in teams if you have enough people).**
 a. Set a time-range to collect some research, and compose your opening statements. Let each team go twice: once to share their opening statements, and once to rebut.
 b. Have one person be the judge and time-keeper, but don’t let him/her off the hook: the judge must explain why the winning team’s evidence was more persuasive.
 c. Note: You may need to do a little background research, but it’s worth it: if your topic is the hydrological cycle (the water cycle) for a biology class, it might not seem worthy of debate until you apply that knowledge to current ecology practices in L.A. To do *that*, you’ll have to learn the background material to argue persuasively. You’ll be more informed about the topic & more engaged.
 d. Can’t get started? Dig deeper into the research to find an area where scholars disagree about the material, procedures, or practical application of the knowledge.

4. **Create your own problems or essay questions for others to solve.**
 a. Try to anticipate what might be on the test, and try to mimic the style of questions (i.e. *how* they might appear). This is the hardest & most valuable part.
 b. Have all group members try to answer the same question at the same time.
 c. Prepare for an exam by setting a time constraint using a timer. This is *not* a race, but is preparation for timed, in-class exams.
 i. Try this out for both objective Qs (like math problems) and subjective Qs (like essays). Determine the number of questions you’re like to have and time yourself.
 d. Share your answers, and review the process you took to create them. What kind of evidence or formulas did you use, and why?